
SIAM J. OPTIMIZATION
Vol. 5, No. 4, pp. 835-857, November 1995

1995 Society for Industrial and Applied Mathematics
0O6

THE MOLECULE PROBLEM: EXPLOITING STRUCTURE IN
GLOBAL OPTIMIZATION

BRUCE HENDRICKSONt

Abstract. The molecule problem is that of determining the relative locations of a set of objects
in Euclidean space relying only upon a sparse set of pairwise distance measurements. This NP-hard
problem has applications in the determination of molecular conformation. The molecule problem
can be naturally expressed as a continuous, global optimization problem, but it also has a rich
combinatorial structure. This paper investigates how that structure can be exploited to simplify
the optimization problem. In particular, we present a novel divide-and-conquer algorithm in which
a large global optimization problem is replaced by a sequence of smaller ones. Since the cost of
the optimization can grow exponentially with problem size, this approach holds the promise of a
substantial improvement in performance. Our algorithmic development relies upon some recently
published results in graph theory. We describe an implementation of this algorithm and report some
results of its performance on a sample molecule.

Key words, global optimization, graph rigidity, molecular conformation

AMS subject classifications. 05C10, 49M27, 51K99

1. Introduction. Consider a set of objects in Euclidean three-space at unknown
locations. We wish to determine the relative locations of the objects, but the only
information available to us is some subset of their pairwise distances. How can we use
this information to compute their positions? We call this the molecule problem. It has
obvious applications in surveying and satellite ranging [19], [31], and a less obvious
but potentially more important application in determining molecular conformation.
It is possible to interpret the nuclear magnetic resonance spectra of a molecule to
obtain pairwise interatomic distance information [10], [33], [32]. Solving the molecule
problem in this context would determine the three-dimensional shape of the molecule,
which is critical for understanding its chemical and biological properties.

The data in an instance of the molecule problem can be succinctly represented by
a graph G (V, E). The vertices V correspond to the objects or atoms, and an edge
eij E E connects vertices and j if the distance between the corresponding objects is
known. We will denote the number of vertices and edges by n and m, respectively,
and the distance associated with edge eij by diy. A realization of a graph is a mapping
p that takes each vertex to a point in Euclidean space. (Some authors prefer the term
embedding, but a realization need not be an embedding in the strict topological sense.)

The molecule problem can be naturally phrased as a nonlinear global optimization
problem. Denoting the position of a vertex i as pi, we can construct a simple cost
function F(p) that penalizes a realization for unsatisfied constraints. One simple such
function is

(1) F(p) -(IPi Pjl 2 di2)2

where I" denotes the Euclidean norm. This function is everywhere infinitely differen-
tiable, and (assuming all the distances are correctly given) it has a global minimum

Received by the editors January 28, 1992; accepted for publication (in revised form) July 27,
1994.

Applied and Numerical Mathematics Department, Sandia National Labs, Albuquerque, New
Mexico 87185-1110 (bah(C)cs.sand+/-a.gov). This research was performed while the author was at
Cornell University, supported by a fellowship from the Fannie and John Hertz Foundation.

835

D
ow

nl
oa

de
d

03
/1

8/
15

 to
 1

98
.1

02
.1

53
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

836 B. HENDRICKSON

of zero, attained when all the distance constraints are satisfied. In principle, F(p)
could be used with any global optimization technique to solve the molecule problem.
Unfortunately, this naive approach is unlikely to work well in practice, due to the
computational complexity of the problem. Saxe has shown that the molecule problem
is strongly NP-complete in one dimension, and strongly NP-hard in higher dimen-
sions [29], so it is unlikely that a general polynomial time algorithm exists. It can
also be shown that F(p) can have an exponential number of local minimizers, which
makes the global optimization problem daunting.

In this paper, we describe an approach to the molecule problem that attempts
to avoid having to solve a large global optimization by instead solving a sequence of
smaller optimizations. Since the cost of an optimization can grow exponentially with
the size of the problem, this approach holds the prospect of a substantial reduction in
computational effort. To achieve this reduction, we will need to exploit some complex
combinatorial structure inherent in the molecule problem, which will allow us to de-
vise a novel divide-and-conquer algorithm. Although an important computer science
paradigm, divide-and-conquer methods have not previously found many applications
in optimization. The purpose of this paper is twofold: on the one hand we present a
novel algorithm for a practically important optimization problem, and on the other
hand we provide a case study of how divide-and-conquer ideas can be applied to op-
timization. It is our hope that the underlying ideas will find application to a variety
of additional problems, a possibility we will reconsider in our conclusions.

A simple observation underlies our divide-and-conquer approach to the molecule
problem. Within a large problem there are often subproblems that can be solved
independently. If we can identify a subgraph that has many edges, it may be possible
to determine the relative positions of the vertices in the subgraph by only considering
the subgraph’s induced edge constraints. Once this subproblem is solved, the entire
subgraph can be treated as a rigid body. In three-space, a rigid body has six degrees
of freedom, but considered independently each vertex has three. So by treating a set
of vertices collectively the number of variables in the problem can be substantially
reduced, greatly simplifying the original problem. Using this approach, the initial
large optimization problem is replaced by a sequence of smaller ones.

If we are to treat a subgraph as a rigid body, we must be certain that the relative
positions of the vertices in the rigid body match their relative positions in the solution
to the full problem. This can only be guaranteed if the subgraph allows only a single,
unique realization (modulo translations, rotations, and reflections), a property we refer
to as unique realizability. In addition to characterizing uniquely realizable graphs, we
need to be able to find subgraphs that have this property within the larger graph that
represents the full problem.

This approach to the molecule problem has been implemented in a code named
ABBIE. Since it decomposes a large global optimization into a sequence of smaller,
more localized problems, the program is named in honor of Abbie Hoffman for his
admonition to "think globally, act locally," although it is doubtful he had nonlinear
optimization in mind! The structure of the ABBIE program is depicted in Fig. 1.

For the purposes of this paper we need to make two assumptions about the data,
which make for an idealized problem. The first assumption is that we know edge
distances with a high degree of accuracy. The second is that there is no special
relationship among the locations of the vertices that generated the data for the prob-
lem. More formally, a realization is said to be generic if the vertex coordinates are
algebraically independent over the rationals. We will assume the realization that gen-

D
ow

nl
oa

de
d

03
/1

8/
15

 to
 1

98
.1

02
.1

53
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

THE MOLECULE PROBLEM 837

Find maximal uniquely realizable subgraphs
For Each such subgraph

If subgraph is small enough Then
Position graph with global optimization

Else Break into smaller pieces
For Each piece call ABBIE
Combine pieces with global optimization

Return (realized subgraphs)

FIG. 1. The structure of the ABBIE program.

erated our data was generic, but this is actually a much stronger condition than we
need. There is only a small set of algebraic dependencies that we need to avoid in the
uniqueness analysis. However, within the space of all realizations, the set of generic
realizations is dense, and the nongeneric realizations comprise a set of measure zero.
These assumptions are unrealistic for true data, which can be noisy and imprecise,
but they are necessary for the formal derivation of the algorithm. We believe these
constraints can be relaxed somewhat in practice, as we will discuss in the conclusions.

Most previous work on the molecule problem has been performed by chemists
interested in molecular conformation. Various heuristics have been developed that
rely in various ways upon knowledge about chemical structures. A survey of this
previous work is beyond the scope of this paper, but a good overview can be found
in Chapter 6 of Crippen and Havel [10]. A more detailed description of the current
work is provided in Hendrickson [14].

This paper is structured as follows. The characterization of uniquely realizable
graphs is the topic of the next section. This is followed in 3 by an algorithm to
identify uniquely realizable subgraphs, step 1 in Fig. 1. In 4 we describe ABBIE’s
technique for breaking a large, uniquely realizable graph into pieces (step 3 in Fig. 1).
To finally determine coordinates, steps 2 and 4, ABBIE uses a global optimization
procedure that is described in 5. Experimental results are presented in 6, followed
by discussion and conclusions in 7.

2,. Conditions for unique realizability. Does an instance of the molecule
problem have a unique solution? Saxe has shown this problem to be as difficult as
the original molecule problem: strongly NP-complete in one dimension, and strongly
NP-hard in higher dimensions [29]. However, these results depend upon very special
realizations in which the locations of the vertices are not algebraically independent.
Since we are assuming that our problem is generic, these cases can be excluded, and
the uniqueness question becomes much easier. Strong results can be derived that
depend only upon the underlying graph, independent of the edge lengths.

Two independent necessary conditions for unique realizability are established in
Hendrickson [15], along with algorithms for their detection, and we briefly summarize
these below. Unfortunately, in three and higher dimensions these conditions aren’t
sufficient. We present a sufficiency condition for unique realizability in 2.3 and an
algorithm for identifying it in 2.3.2.

The two independent necessary conditions derived in Hendrickson [15] for a graph
to be uniquely realizable in d dimensions are

1. vertex (d + 1)-connectivity and
2. redundant rigidity.
Of these, vertex connectivity is a well-studied graph property, and efficient al-

D
ow

nl
oa

de
d

03
/1

8/
15

 to
 1

98
.1

02
.1

53
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

838 B. HENDRICKSON

gorithms for verifying (d + 1)-connectivity have been developed [1], [5], [16], [18].
Redundant rigidity is less familiar, but efficient algorithms are known [15] and re-
viewed below. For later reference we will review some simple rigidity theory in 2.1
and 2.2; a more complete discussion can be found in some of the references [2], [3],
[9], [28]. In 2.3 a previously unpublished sufficient condition for unique realizability
is derived and an algorithm to identify it is sketched.

2.1. Graph rigidity. We will call the combination of a graph G and a realization
p a framework, denoted by p(G). A realization is satisfying if all the pairwise distance
constraints are satisfied. Intuitively, a framework is flexible if the vertices can move
while keeping all the edge distance constraints obeyed. More formally, a finite flexing
of a framework p(G) is a family of realizations of G, parameterized by t so that the
location of each vertex is a differentiable function of t and

(2) Vej e E, Ip(t) pj(t)l 2 constant.

Note that a motion of the Euclidean space itself, a rotation or translation, satisfies the
definition of a finite flexing, and such flexings are said to be trivial. If the only finite
flexings allowed by a framework are trivial, then the framework is said to be rigid.
Otherwise it is flexible. In d-space there are d(d + 1)/2 independent trivial flexings.

A linearized version of flexibility is more convenient, so thinking of t as time and
differentiating (2) we find that

(3) Veij e E, (vi vy (pi pj O,

where vi is the instantaneous velocity of vertex i. An assignment of velocities that
satisfies (3) for a particular framework is an infinitesimal motion of that framework.
If a framework has a nontrivial infinitesimal motion it is infinitesimally flexible, and
if not it is infinitesimally rigid.

Clearly the existence of a finite flexing implies an infinitesimal motion, but the
converse is not always true. However, for generic realizations the converse is true [28],
and, since we are considering only generic realizations, we will drop the prefix and
refer to frameworks as either rigid or flexible. Whether a generic framework is rigid
or flexible is purely a property of the underlying graph as indicated by the following
theorem [13].

THEOREM 2.1 (Gluck). If a graph has a single infinitesimally rigid realization,
then all its generic realizations are infinitesimally rigid.

This theorem is crucial for a graph theoretic approach to the molecule problem.
Since the frameworks built from a graph are either all infinitesimally flexible or al-
most all rigid, graphs can be characterized according to the typical behavior of their
frameworks, without reference to a specific realization. This also allows us to be
somewhat cavalier in the distinction between rigid frameworks and graphs that have
rigid realizations. Henceforth such graphs will be referred to as rigid graphs.

In one dimension, rigidity is equivalent to connectivity. In two dimensions a
combinatorial characterization of rigidity was first discovered by Laman [20], and
several different O(n2) algorithms for rigidity testing have been developed [11], [15],

In three and higher dimensions, no combinatorial characterization of rigidity is
known. However, there is an efficient randomized algorithm based on Theorem 2.1 and
(3). Begin by randomly positioning all the vertices. With probability one, the rigidity
of the corresponding framework will be the same as that of the graph. Now construct

D
ow

nl
oa

de
d

03
/1

8/
15

 to
 1

98
.1

02
.1

53
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

THE MOLECULE PROBLEM 839

the set of equations (3), where the velocities are the unknowns. The coefficients of the
velocities can be formed into a matrix of size m nd, known as the rigidity matrix,
denoted by M. Each row of M corresponds to the constraint imposed by a single
edge. The null space of this matrix represents the allowed infinitesimal motions of
the framework. Clearly the d(d + 1)/2 trivial infinitesinal motions are in the null
space. So if the rank of the rigidity matrix is nd- d(d + 1)/2, then the graph is rigid,
otherwise with probability one it is flexible.

2.2. Redundant rigidity. A graph is defined to be redundantly rigid if it is
rigid after the removal of any single edge. Redundant rigidity is a necessary condition
for a graph to be generically uniquely realizable [15]. We will define an edge of a rigid
graph to be redundant if the graph remains rigid after the removal of the edge.

In one dimension, redundant rigidity is equivalent to edge biconnectivity. In two
dimensions, an efficient algorithm built upon the combinatorial characterization of
rigidity is described in Hendrickson [15]. In higher dimensions, since no graph theo-
retic characterization of rigidity is known, no characterization of redundant rigidity
exists either. However, the randomized approach for rigidity testing described above
can be extended to check for redundant rigidity.

Since rows of the rigidity matrix, M, correspond to edges of the graph, a frame-
work is redundantly rigid if and only if MT has maximal rank after the removal of any
single column. A column of MT is said to be redundant if the rank of MT remains
the same after its removal. If MT has a set of nd- d(d - 1)/2 linearly independent,
redundant columns, then the framework is redundantly rigid.

Our algorithm for redundant rigidity builds upon a QR factorization of MT.
We maintain a list of linearly independent columns, and a new column is added to
the list if it is linearly independent of the current set, otherwise it is discarded. A
discarded column of MT can be expressed as a linear combination of some set of the
independent columns. The discarded column could replace any of the columns in the
linear combination which form it, without altering the span of the independent set.
Hence, a discarded column identifies a set of redundant columns within the list.

The columns within the list whose linear combination equals a discarded column
can be easily determined. Assume the algorithm has identified k independent columns
of MT, placed together to form an nd k matrix, Ak. The QR factorization has been
proceeding on these columns as they are identified, so there is a k k orthogonal
matrix Qk and an nd k upper triangular matrix Rk satisfying (kRk Ak. If a new
column b of MT is linearly dependent upon the columns of Ak then there must be a

Tvector c satisfying Akc (kRkc b or, alternately, Rkc (k b. In the course of the
QR factorization the column b has been overwritten with Q[b, so it is easy to solve
the upper triangular system for c. The nonzero elements of c identify which columns
of Ak contribute to the linear combination composing b, that is, which columns are
redundant.

This procedure requires the solution of O(m) triangular systems, each of which
requires O(k2) operations, where k is always O(nd), so the total additional time is of
the same order as the QR factorization itself, O(mn2d2).

2.3. A sufficient condition for unique realizability. In one dimension, the
necessary conditions for generic unique realizability discussed above reduce to edge
biconnectivity, which can also be shown to be sufficient. In two dimensions, we know
of no examples of graphs that satisfy the necessary conditions while not being unique,
but the sufficiency of these conditions has not been proven.

D
ow

nl
oa

de
d

03
/1

8/
15

 to
 1

98
.1

02
.1

53
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

840 B. HENDRICKSON

In three and higher dimensions, Connelly has discovered a set of bipartite graphs
that satisfy the necessary conditions above, while still allowing multiple realiza-
tions [6], [8]. In three dimensions the only graph in this set is K5,5, the complete
bipartite graph with five vertices in each partition. This class of graphs was identified
by the unusual properties of their stress matrices, an exploration of which will lead
us to a sufficient condition for unique realizability.

2.3.1. The stress matrix. Consider a framework p(G) consisting of a graph G
and a generic satisfying realization p. A stress for p(G) is an assignment of scalars
wij wji to every pair of vertices of G in such a way that wj 0 if e E, and

n

(a) 0 vi,
j=l

where Pk is the location in]Rd of vertex k. Note that these are vector equations since
each Pk has d coordinates, so each of the d dimensions must satisfy an identical set of
equations.

The concept of a stress comes originally from mechanical engineering, where the
edges would be considered to be cables or struts under tension or compression. The
framework will be in equilibrium exactly when the vector sum of all the stresses on
each vertex is zero, which is the condition expressed by (4).

Equation (4) defines a stress for a particular realization p. In general, this same
set of values wij will not be a stress for a different realization. However, there is a
very important exception to this general rule. Stresses are useful for our purposes
because of the following result due to Connelly [7].

THEOREM 2.2. Let p be a generic, satisfying realization of G in]Rd in which the
affine span of the locations of the vertices is d-dimensional. If w is a stress for p(G),
then w is a stress for any satisfying realization of G.

This theorem allows us to greatly narrow down our search for alternate satisfying
realizations. Once we generate a stress for p we only need to consider realizations q
that satisfy the same stress equations.

Assume we have generated a stress for our initial satisfying realization p. We
wish to find a q that can replace p in (4). It will be convenient to rewrite the stress
equations. Let q denote coordinate r of the location of vertex i in realization q. For
each 1 _< i _< n and each 1 _< r _< d we have the following equation.

(5) wij q[wiiq O.
j----1 j--1

This is just a set of n linear equations repeated for each of the d dimensions. Define
the symmetric, n x n stress matrix, , as follows.

’i,j ZO3ik
k

ifi#j,
ifi-j.

If we denote the n-vector consisting of coordinate r of each vertex by qr, then (5) can
be succinctly expressed as

(6) q" O,

D
ow

nl
oa

de
d

03
/1

8/
15

 to
 1

98
.1

02
.1

53
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

THE MOLECULE PROBLEM 841

for each dimension r. Any satisfying realization must satisfy these equations, so our
search for alternate satisfying realizations is now reduced to an investigation of the
null space of .

Each row of the stress matrix sums to zero, so the vector of ones is in ’s null
space. The product pr is identically zero by the construction of the stress. This is
true for each of the d coordinates, so the nullity of the stress matrix is at least d -+- 1.
The linear combinations of these trivial null vectors are the affine linear maps of the
vertices in realization p. That is, any realization in which q, the coordinates of vertex
i, can be expressed as Ap + b will satisfy the same stress equations as p, where A
is any d d matrix and b any d-vector. If there is nothing else in the null space of

then the only possible alternate satisfying realizations are these affine linear maps,
which gives us the following theorem.

THEOREM 2.3. Let p be a generic, satisfying realization of G in]pd in which the
ajCfine span of the locations of the vertices is d-dimensional. If w is a stress for p(G)
such that has nullity d -}- 1, then any satisfying realization of G must be an ajfine
linear map of p.

Connelly has shown that these troublesome affine linear maps cannot lead to
nonequivalent, satisfying realizations [7]. This gives us the following sufficient condi-
tion for a graph to have a unique realization.

THEOREM 2.4. Let p be a generic, satisfying realization of G in]Rd in which the
affine span of the locations of the vertices is d-dimensional. If w is a stress for p(G)
such that has nullity d -}- 1, then there is no nonequivalent, satisfying realization of
G.

Determining whether the stress matrix has the proper nullity is what we will call
the stress test for unique realizability.

For a given realization, the stresses defined by (4) are solutions to a linear system
of equations. As such they can be expressed as polynomials in the coordinates of the
vertices. To determine whether or not the stress matrix has nullity 4, simply sum the
squares of all the (n- 4) (n- 4) subdeterminants of . This polynomial will be
zero if and only if the nullity of the stress matrix is greater than four. Thus we have
a polynomial in terms of the coordinates of the vertices that describes our sufficiency
condition. If this polynomial is nonzero for any generic realization, then it is nonzero
for all generic realizations.

THEOREM 2.5. The nullity of the stress matrix is a generic property; that is, it
has the same value for for all generic realizations.

COROLLARY 2.6. If any generic realization passes the stress test, then all generic
realizations will pass.

In other words, the stress test is generic. Our necessary conditions were generic as
well, which provides evidence that unique realizability may itself be a generic property.
Whether or not this is the case is an open problem. Corollary 2.6 justifies using a
random realization to generate the stresses. As we will see in the next section, a
particularly convenient realization to use is the one that was utilized to generate the
rigidity matrix for our redundant rigidity algorithm.

2.3.2. Forming the stress matrix. The sufficient condition for unique realiz-
ability expressed by Theorem 2.4 is not much use for us unless we can readily compute
stresses. Fortunately, this is not a problem. In fact, most of the work has already
been done in the QR factorization of the rigidity matrix M that was described in
2.2. Redundant edges of the graph were identified by linear dependence among the
columns of M. Element [e(i, j), di + r] of M is p -p if the edge numbered e(i,j)

D
ow

nl
oa

de
d

03
/1

8/
15

 to
 1

98
.1

02
.1

53
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

842 B. HENDRICKSON

connects vertices and j, and zero otherwise. Consequently, if the multipliers in a
linear combination of columns of M summing to zero are denoted by (e(i,j) for edge
e(i,j), then for each 1 <_ <_ n and 1 <_ r <_ d

0 Z e(i,j)Me(i,J),di+r

p;).

Equating a(i,j) with wij in (4) we see that the multipliers in the linear combination
constitute a stress. Consequently, the solution vector to the triangular systems solved
in 2.2 identifies a stress.

In the course of a full redundant rigidity calculation many stresses may be found,
one for every discarded row. Each of these stresses generates its own stress matrix,
and any linear combination of stresses is also a stress. Since we are interested in
identifying a stress that maximizes the rank of , almost any linear combination of
the stresses generated in the QR factorization will suffice. In practice we use a sum
of all the stresses, scaled by random multipliers.

The determination of the rank of the stress matrix can be troublesome due to
numerical roundoff problems. The entries in the stress matrix are the result of a
previous factorization, so they may already have modest inaccuracies. For this reason
it is important to determine the rank of gt in as numerically stable a fashion as possible,
so we recommend a singular value decomposition.

3. Finding uniquely realizable subgraphs. The preceding section described
two necessary conditions and a sufficient condition for a graph to have a unique
realization. Step 1 of the algorithm sketched in Fig. 1 requires a further step, the
identification of subgraphs that are uniquely realizable. Ideally, we would like to find
subgraphs that satisfy the sufficiency condition, but it is not clear how the stress
test can be used directly for this purpose. However, the necessary conditions are well
suited for identifying subgraphs, which suggests using the necessary conditions to find
candidate subgraphs, and then confirming their uniqueness with the sufficiency test.
An outline of such an algorithm is presented in Fig. 2.

If Graph is K5,5 Then
Return (No_unique_subgraphs)

Else If not four-connected Then
Recurse on four-connected components

Else If not redundantly rigid Then
recurse on redundantly rigid components

Else Perform sufficiency test
If Pass Then

Return (Graph_unique)
Else Output interesting graph

FIG. 2. ABBIE’s algorithm for finding maximal uniqitely realizable subgraphs.

The only case that is not handled with this approach is a graph that passes the
necessary conditions and fails the sufficiency test. We have yet to discover such a
graph, although we would be very interested in finding one. In practice this approach
seems to work very well, at least on the test problems that will be described in 6.

D
ow

nl
oa

de
d

03
/1

8/
15

 to
 1

98
.1

02
.1

53
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

THE MOLECULE PROBLEM 843

Incidentally, our failure to find any graphs that pass the necessary conditions while
failing the sufficiency test provides evidence that such graphs are uncommon, if they
exist at all.

The heart of the procedure described in Fig. 2 is finding (d / 1)-vertex connected
subgraphs and redundantly rigid subgraphs. The vertex connectivity problem is well
studied, and good algorithms for finding maximal subgraphs are known [1], [5], [16],
[18]. However, algorithms for finding redundantly rigid subgraphs have not been pre-
viously considered. In one dimension, this requires finding biconnected components,
for which there are O(m) algorithms [1]. In two dimensions, an O(n2) algorithm for
finding maximal redundantly rigid components is given by Hendrickson in [15]. In
three and higher dimensions, an algorithm needs to rely upon the QR factorization
of the transpose of the rigidity matrix. ABBIE’s algorithm, summarized in Fig. 3,
relies upon the observation that any edge that is not redundant in the original graph
will not be redundant in any subgraph. After removing these nonredundant edges,
the flexes that remain will not affect the redundantly rigid subgraphs. These sub-
graphs can be identified by noticing which subsets of vertices preserve their relative
locations under the remaining flexes, which requires the construction of a basis for
the remaining flexes.

A basis for the space of flexes can be generated by the QR factorization of the
columns of the transpose of the rigidity matrix that corresponds to an independent
set of redundant edges. It is helpful to exclude the trivial motions from the basis by
explicitly adding them as columns at the end of the factorization. This reduces the
size of the space of flexes and so speeds up the determination of subgraphs. If there
are k redundant, independent columns, then the final 3n- 6- k columns of Q form a
basis for the flexes. Sets of vertices whose relative positions remain unchanged under
these flexes are redundantly rigid subgraphs.

Identifying these sets of vertices requires the ability to determine whether the
distance between any two vertices and j changes under any of the allowed flexes.
For each flex this involves the calculation of the inner product (vi vj) (pi pj),
where v is the velocity vector of vertex i under the flex, and p is its location. If this
quantity is zero then the distance between i and j remains unchanged.

A pair of vertices whose distance doesn’t change under any of the allowed flexes
could just as well be connected by an edge, so we will consider such vertices to
be joined by an induced edge. Finding sets of relatively fixed vertices corresponds
to finding cliques in this graph of induced edges. A simple geometric observation
simplifies this task. Let $ be a set of at least three vertices whose relative positions
don’t vary. To determine whether a new vertex v should be added to $ it is sufficient
to check the change in the distance from v to any three vertices in . With three
neighbors at fixed locations the position of v cannot vary continuously.

ABBIE’s algorithm for identifying these cliques begins by looking for sets of three
vertices whose relative locations are fixed. This requires O(n3) time. Once such a
triangle is found, the unique clique containing it can be grown to maximal size by
checking all other vertices against these three in O(n) time. Although the resulting
O(n4) algorithm is asymptotically the most expensive portion of the decomposition,
for the problems discussed in 6, the cost of the entire component finding process is
less than 1% of the cost of the QR factorizations.

4. Breaking large graphs. A maximal uniquely realizable subgraph may be
large, and consequently prohibitively expensive to try to realize directly. As described
in Fig. 1, ABBIE breaks such a subgraph into pieces and recurses on the pieces, before

D
ow

nl
oa

de
d

03
/1

8/
15

 to
 1

98
.1

02
.1

53
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

844 B. HENDRICKSON

Use QR factorization to identify independent set of redundant edges
Use QR factorization to construct basis for remaining flexes
For All independent three-cliques (x, y, z) in induced graph

For All other vertices v
If v has induced edges to x, y and z Then

add v to subgraph containing x, y and z.

FIG. 3. An algorithm for finding redundantly rigid subgraphs.

trying to fit them back together. Ideally, smaller uniquely realizable subgraphs would
be found directly, but we don’t know how to do this. Instead, as indicated by step 3
of Fig. 1, ABBIE breaks the graph by finding a small vertex separator and recurses
on the induced pieces.

In selecting a value for how large a subgraph must be before being broken, a
balance must be struck between two extremes. A small value results in a large number
of small optimization problems, and potentially difficult optimizations fitting many
small pieces together. On the other hand, a large value leads to a smaller number of
large optimizations. For the calculations described in 6 a cutoff of 15 vertices was
used. The value of this parameter seemed to have a very small impact on overall
computation time. The most expensive optimization problems were typically those
that occurred higher up in the chain of recursion, involving many more vertices.
Decisions about how to handle these relatively small components were not of critical
importance.

The fundamental unit of information in the molecule problem is an edge length,
so when a graph is broken into pieces, any edge that does not lie in a single compo-
nent is lost to the recursive positioning procedures. For this reason we would like a
decomposition technique that ensures that any two vertices joined by an edge end up
in the same component. We would also like the technique to divide the graph into
approximately equally sized pieces as this will speed the recursive decomposition. To
accomplish these goals, ABBIE was endowed with a procedure to find a small vertex
separator, and when the separator set is added to each component no edges are lost.

Forces between atoms are strongly repulsive at small distances, so each atom
effectively has an exclusion zone in which no other atoms are located. In addition,
distances can only be measured if two atoms aren’t too far apart. These geometric
constraints place the underlying graphs in the class of k-overlap graphs, which are
known to have vertex separators of size O(n2/3) [23]. For the problems described in
6, the separators found were uniformly small.

There are a number of different heuristics for finding small vertex separators,
and for no compelling reason, ABBIE uses an algorithm described by Liu [22]. This
algorithm uses a minimum degree ordering to generate an initial separator, which is
then improved by a bipartite matching technique.

5. The optimization routines in ABBIE. Any program to solve the molecule
problem must eventually assign coordinates to vertices. The combinatorial prepro-
cessing described above merely delays this eventuality so that the actual positioning
problems are smaller. The positioning problems that ABBIE needs to contend with
involve fitting together two types of objects so that a set of distance constraints are
satisfied: vertices, and subsets of vertices whose relative positions have already been
determined which we will call chunks. These chunks can be treated as rigid bodies
with at most six degrees of freedom in three-space.

D
ow

nl
oa

de
d

03
/1

8/
15

 to
 1

98
.1

02
.1

53
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

THE MOLECULE PROBLEM 845

ABBIE solves these problems using a three-phase approach: variable reduction,
variable selection, and global optimization. In the first phase the program uses a
combinatorial analysis to try to merge chunks and vertices together. For instance,
if a vertex has four edges connecting it to a chunk then the vertex will generally
have a unique location relative to the chunk, so the vertex can be merged into the
chunk. This phase reduces the size of the resulting optimization problems and will be
described in greater detail in 5.1.

After exhausting its bag of combinatorial tricks ABBIE resorts to a nonlinear,
global optimization. All the possible locations and orientations of the vertices and
chunks are expressed by a set of translational and rotational variables. Several dif-
ferent sets of variables are possible and ABBIE attempts to select a set that will
minimize the cost of the optimization. This selection process is described in 5.2.
ABBIE constructs a cost function that penalizes a realization for not satisfying an
edge length constraint, so that the sum of the penalties will be zero only when all the
constraints are satisfied. To find a realization where this function goes to zero, ABBIE
generates random values for all the variables and uses them as a starting vector for
a local minimization. This process is repeated until a zero value is found, indicating
that all the constraints are satisfied, and that the locations of the vertices constitute
a satisfying realization. Details of this nonlinear optimization will be given in 5.3.

Much more sophisticated techniques to solve this global optimization are possible.
In fact, most previous approaches to the molecule problem have focused exclusively
on this aspect, as discussed in Chapter 6 of Crippen and Havel [10]. Our goal in this
work was to test the feasibility of the divide-and-conquer approach to the molecule
problem, and it is our expectation that the overall approach will be successful, even
though the component optimization techniques are quite simplistic. Better global
optimization methods like tunneling [21] or efficient stochastic algorithms [27] could
transparently replace the routines described in 5.3.

5.1. Combinatorial positioning techniques. To reduce the number of vari-
ables in the global optimization, ABBIE first tries to combine small numbers of chunks
and vertices into larger chunks. ABBIE has five different heuristics for enlarging
chunks, which are synopsized in Fig. 4. The success of these techniques depends upon
specific sets of vertices not being coplanar, which is ensured by the assumption that
the final solution is generic. In the first technique, if two chunks have at least four
vertices in common then they can only be combined in one way, and ABBIE merges
them. Second, if a vertex has four edges incident to a chunk then the vertex can be
uniquely positioned relative to the chunk, and the chunk enlarged. ABBIE can use
direct edge lengths that were given in the data, or induced lengths generated by a
chunk that contains the two vertices.

The remaining three heuristics start with a base chunk and add pairs of objects
to it. Consider a vertex with three direct or induced edges to the base chunk. We will
call such a vertex three-valent to the base chunk. The location of the vertex relative
to the chunk has only two possibilities, distinguished by a reflection of the vertex
through the plane of its neighbors. If this ambiguity can be resolved then the vertex
can be added to the chunk. A similar result applies to a chunk that shares three
vertices with the base chunk. Such a chunk will also be called three-valent to the base
chunk. The last three heuristics for enlarging chunks make use of this observation.
The third technique allows two three-valent vertices to be added to a chunk if there is
a direct or induced edge between the two vertices. The length of this edge is used to
resolve the ambiguity of the reflections of the vertices. Note that this technique does

D
ow

nl
oa

de
d

03
/1

8/
15

 to
 1

98
.1

02
.1

53
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

846 B. HENDRICKSON

not work if the two vertices have the same three neighbors in the base chunk.
The fourth heuristic adds two three-valent chunks to the base chunk. There are

several ways in which the reflection ambiguity can be resolved. The two chunks can
share a vertex that is not in the base chunk, or there can be a direct or induced edge
between vertices in the two chunks that does not involve a vertex in the base chunk.
Again, if the two sets of three shared vertices are the same then the ambiguity cannot
be resolved.

The last technique involves adding a three-vMent chunk and a three-valent vertex
to the base chunk by resolving the reflections with a direct or induced edge between
the vertex and the chunk. Again, if the three adjacent or shared vertices are the same
then the ambiguity cannot be resolved.

Until No Change
For All Chunks X

For All chunks Y, 4-valent to X
Merge X and Y

For All vertices v, 4-valent to X
Merge v into X

For All pairs of vertices v and w, 3-vMent to X
If valencies differ And reflections can be disambiguated Then

Merge v and w into X

For All pairs of chunks Y and Z, 3-valent to X
If valencies differ And reflections can be disambiguated Then

Merge X, Y and Z

For All chunks Y and vertices v, 3-valent to X
If valencies differ And reflections can be disambiguated Then

Merge X, Y and v

FIG. 4. ABBIE’s combinatorial positioning heuristics.

ABBIE applies these techniques to all combinations of chunks and vertices until
no more merging is possible. The vast majority of positioning problems encountered
in the test problems were resolved this way, without any need for the nonlinear op-
timizer. Additionally, more complicated heuristics are possible, and would probably
be worth implementing. As the numerical results in 6 will show, the nonlinear opti-
mizations dominate the execution time of ABBIE. Hence, it is our expectation that
the additional cost of more complex techniques would be more than compensated for
by the reduction in size and, consequently, cost of the optimization problems.

5.2. Selecting optimization variables. The optimization problems ABBIE
must solve involve sets of chunks and vertices. Vertices have three translational de-
grees of freedom, and the location and orientation of a chunk can be described by
three translational and three rotational variables. To describe rotations of chunks,
ABBIE defines an axis of rotation using a standard (0,) system, and an amount
of rotation. This representation has fewer singularities than the more familiar Euler
angles.

D
ow

nl
oa

de
d

03
/1

8/
15

 to
 1

98
.1

02
.1

53
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

THE MOLECULE PROBLEM 847

There are many possible ways to parameterize the motions of the vertices and
chunks. For instance, any of the chunks can be held fixed while the others are al-
lowed to move. The selection of optimization variables in ABBIE was designed to
minimize the computational effort required by the global optimization. ABBIE solves
the global optimization problem by a sequence of local minimizations, so there are
two factors which determine the total cost of the global optimization: the cost of
each local minimization and the number of local minimizations required to find the
global optimum. We need to analyze these two quantities before we can explain the
procedure for selecting optimization variables.

To find a local minimizer from a random starting point, ABBIE uses a trust region
approach, repeatedly forming and factoring the Hessian matrix. This factorization
tends to dominate the cost of each iteration, requiring (q3) floating point operations,
where q is the number of variables. It is difficult to estimate the number of iterations
each local minimization will require, as this depends in a complicated way on the local
topography of the penalty function, so ABBIE assumes that the cost of each local
minimization is simply proportional to the cube of the number of variables.

The number of local minimizations required to find the global optimum depends
on the size of the region of attraction of the global minimizer relative to the size of
the entire domain. Assuming this region of attraction is of average size, the number
of local minimizations will be proportional to the number of local minimizers in the
problem. Since this number can grow exponentially with the number of vertices, the
number of local minimizers can be approximated as 2q/, where is an empirical
parameter. After some experimentation, ABBIE was given a value of 8 for 3 for the
test problems described in 6, but an appropriate value for this parameter depends
on the class of problems under consideration.

There is one additional factor to consider in estimating the cost of an optimiza-
tion. Note that edge lengths remain unchanged if a chunk is replaced by its mirror
image, but there is no continuous rigid body motion to transform between these two
realizations. ABBIE cannot know in advance which of these two parities is the correct
one, so it has to try them both. Since only one will fit properly with the remainder
of the graph, if a particular chunk is assigned an arbitrary parity then all the others
must be made consistent. Since parities are selected randomly as a local optimization
is started, this adds an additional factor of 2k-1 to the number of local minimization
attempts, where k is the number of chunks in the optimization problem. In prac-
tice, there may be additional information available to the chemist that can determine
the proper parities. If so, exploiting this knowledge should greatly improve perfor-
mance, but the current incarnation of ABBIE assumes that only pairwise distances
are available.

Combining these three factors, we can approximate the total cost of a global
optimization as O(q32k-12q/Z). ABBIE tries to select a set of optimization variables
that minimizes this estimated cost function.

In performing a local optimization, one base chunk is held fixed at the origin
to remove translational and rotational ambiguities. (If no chunks can be found, a
single edge is used, and an additional vertex is constrained to lie in the x-y plane.)
ABBIE tries all of the chunks in turn as candidate base chunks, and selects the one
that minimizes the estimated cost of the optimization. If a second chunk shares three
vertices with the base chunk then it has no continuous degrees of freedom. If a chunk
shares two vertices with the base chunk its motions can be described with a single
rotational variable. If a chunk has a single vertex in common with the base chunk

D
ow

nl
oa

de
d

03
/1

8/
15

 to
 1

98
.1

02
.1

53
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

848 B. HENDRICKSON

then it has three degrees of freedom, and if it shares none it has six. All chunks add
a factor of two to the parity consideration.

In evaluating the candidate base chunks ABBIE adds the remaining chunks in a
greedy manner, trying to minimize the estimated optimization cost. This process is
sketched in Fig. 5. At each step ABBIE selects the remaining chunk with the largest
number of vertices that are not yet contained in an accepted chunk. This chunk
is accepted and the variables describing its motion included in the optimization, or
rejected and ignored, depending upon which action reduces the estimated optimization
cost. If the chunk is accepted it increases the number of chunks by one, and it can
increase the number of variables in the optimization. If it is rejected, its vertices that
are not yet in an accepted chunk are assumed to wander freely, each adding three
to the number of variables. ABBIE processes all of the remaining chunks in this
way, determining the cost of selecting this base chunk, as well as generating a set
of variables for the optimization. ABBIE selects the base chunk that generates the
lowest estimated optimization cost, and the corresponding variables are used in the
global optimization.

Best_Cost :- (x

For All vertices v, free(v):= TRUE
For All Candidate base chunks X

k:=l
q:=0
For All vertices v in X, free(v) := FALSE
While any chunks remain

Select next chunk Y having maximal free vertices
t := Number of free vertices in Y
If Y 3-valent to X Then r := 0
Else If Y 2-valent to X Then r := 1
Else If Y l-valent to X Then r := 3
Else If Y 0-valent to X Then r := 6
Accept_Cost := (q + r)32k2(q+r)/z
Reject_Cost (q + 3t)32k-12(q+3t)/Z
If (Accept_Cost < Reject_Cost) Then

q:=q+r
k:=k+l
For All vertices v in Y, free(v) := FALSE

Else discard Y
End While
t := Number of remaining free vertices
q:=q+3t

Cost := q32k-12q/
If (Cost < Best_Cost) Then

Best_Cost :- Cost
Best_Base_Chunk := X
Optimization_Variables := those identified above

FIG. 5. ABBIE’s process for selecting optimization variables.D
ow

nl
oa

de
d

03
/1

8/
15

 to
 1

98
.1

02
.1

53
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

THE MOLECULE PROBLEM 849

5.3. ABBIEs global optimization technique. To finally position the set of
chunks and vertices ABBIE finds the global minimizer of a function that penalizes a
realization for violating constraints. Many different penalty functions are possible and
ABBIE uses a particularly simple one. For each edge eij that needs to be satisfied the
program computes a value P (Ip-pjl2-d)2, where p is the location of vertex i,
and dij is the desired distance between vertices i and j. This is the simplest possible
function that has continuous derivatives of all orders and is greater than zero whenever
a constraint is violated. The full penalty function for edges is then F1 Pi., where
the sum is taken over all edges in the graph which aren’t contained in any chunks.

Positioning problems in ABBIE can involve multiple chunks, other than the base
chunk, that share one or more vertices. These vertices must be forced to coincide in
a satisfying realization, so ABBIE needs a penalty term to enforce this constraint.
The obvious candidate would have the same functional form as that for edges but
with a zero distance. Unfortunately, this function has a singular Hessian. For this
reason the program uses a simpler penalty P IP -Pjl 2. Summing all of these
types of constraints together gives F2, a second component to the cost function. The
full penalty function is then F F1 + F2. We note that the full penalty function is
composed of both quartic and quadratic functions. For large deviations from satisfi-
ability the quartic terms should dominate the quadratic ones, while near the solution
the opposite should occur. In practice this seemed to cause no problems.

To find a zero of this penalty function ABBIE generates a random starting value
for each of the optimization variables, including random parities for each chunk. The
program then performs a local minimization, and this process is repeated until a
functional value of zero (or almost zero) is found or until a limit on the number
of trials is exceeded. This is an extremely simple global optimizer and much more
sophisticated techniques could easily be used instead.

For local optimization ABBIE uses a modified version of the NTRUST code of
Mor and Sorensen that is based upon the trust region method described in Mor
and Sorensen [24]. This approach was selected for ABBIE because trust region tech-
niques tend to be robust, and our function and its derivatives are fairly inexpensive
to evaluate explicitly. NTRUST treats the Hessian as dense, which can be inefficient,
but this is not a serious problem for ABBIE since the divide-and-conquer approach
avoids large problems. The ability to scale variables was added to NTRUST to cope
with the different ranges associated with translational and rotational variables.

6. Results. ABBIE has been tested on simulated molecular data provided by
Palmer [25], [26]. The input data consisted of simulated distance constraints, corre-
sponding to measurements that could be made in a typical NMR experiment. How-
ever, in our case the distances were given precisely, whereas true experimental data
has limited precision. The molecule that generated our test problems was bovine
pancreatic ribonuclease A, a typical small protein consisting of 124 amino acids and,
after discarding end chains, 1849 atoms. The three-dimensional conformation of ri-
bonuclease is known, so all pairwise distances could be determined. For our purposes,
the data set consisted of all distances between pairs of atoms in the same amino acid,
along with 1167 additional distances corresponding to pairs of hydrogen atoms that
were within 3.5/ of each other. The former set of values can be deduced from the
chemical structure, and the latter could in principle be measured by two-dimensional
NMR spectroscopy experiments. Combined, this made for a total of 15,046 edges.

Proteins are constructed of chains of amino acids. Since the shapes of the amino
acids are well known, the conformation of the protein is determined by the angular

D
ow

nl
oa

de
d

03
/1

8/
15

 to
 1

98
.1

02
.1

53
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

850 B. HENDRICKSON

parameters where the amino acids are joined. In fact, one common approach to
the analysis of protein conformation is to treat these angles as the only degrees of
freedom [12]. Under this assumption, if the locations of any four noncoplanar atoms
in an amino acid can be determined, the locations of the remaining atoms in that
amino acid can be easily computed. This allowed us to reduce the size of the graphs
that were passed to ABBIE. Within each amino acid, we discarded vertices that had
no edges to vertices outside of that amino acid, until there were only four vertices left.
In addition, any amino acid that had six or fewer edges to other amino acids could
not be uniquely positioned. These amino acids were removed, further reducing the
size of the graph.

A single problem would give only limited insight into the strengths and weakness
of ABBIE, so we generated a set of related test problems of varying sizes by extracting
leading subchains of amino acids from the ribonuclease. The six different problem sizes
used are presented in Table 1. The second column presents the number of vertices
and edges in the initial, unadulterated graphs. These graphs were reduced in size by
exploiting protein structure as discussed above, resulting in the graph sizes described
in the third column. These are the graphs that were passed to the unique realizability
algorithms. The final column presents the size of the largest uniquely realizable
subgraph that was found within each of the reduced graphs.

TABLE 1
Sizes of the test problems; vertices (edges).

Amino Initial
acids graph
20 292 (2263)
40 604 (4902)
60 902 (7264)
80 1193 (9556)
100 1491 (12038)
124 1849 (15046)

Reduced
graph

63 (236)
S (SS)
310 (1392)
a05 (SOa)
504 (2e7)
698 (3292)

Largest unique
subgraph
57 (es)
174 (786)
287 (1319)
377 (1719)
472 (2169)
695 (3283)

It is worth noting that the edge density for the full molecule is greater than that
for any of the leading subchains. This is a consequence of the tendency of proteins
to form compact structures. Leading subchains need not be as compact, and so the
number of pairs of atoms that are close together is reduced.

For the runs described below, subgraphs were considered too big to directly realize
if they contained more than 15 vertices. All larger subgraphs were divided into pieces
using the small vertex separator heuristic from 4. Also, the stress test to verify unique
realizability was turned off. Besides the intrinsic reduction in effort, this allowed for
some economy in the redundant rigidity calculation [14]. If a subgraph passed the
necessary tests, but wasn’t truly uniquely realizable, disabling the stress test could
lead to incorrect coordinates being computed for the subgraph. However, this would
be detected when the subgraph would be used in later optimizations since it would
be unable to fit properly with the remainder of the full graph.

6.1. Performance of the unique realizability algorithms. ABBIE’s algo-
rithm for finding uniquely realizable subgraphs consists of alternate phases of a four-
connected components routine and a redundant rigidity code. The redundant rigidity
algorithm requires a QR factorization as described in 2.2. The four-connectivity
algorithm in ABBIE removes two vertices at a time and checks for biconnectivity,
requiring O(mn2) time. Although there are asymptotically more efficient algorithms

D
ow

nl
oa

de
d

03
/1

8/
15

 to
 1

98
.1

02
.1

53
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

THE MOLECULE PROBLEM 851

for this step [16], [18], the QR factorization requires O(n3) time, so a more complex
algorithm for four-connectivity was deemed unnecessary. The total time spent in these
portions of the code as a function of the reduced graph sizes is presented in Table 2
for the six different problems. These times are all a small fraction of the optimization
time. These and all subsequent timings are for CPU time on a Sparcstation 1+. As
expected, both the four-connectivity and the redundant rigidity times grow roughly
as the cube of the number of vertices.

TABLE 2
Total minutes spent in unique realizability routines.

Amino Redundant
acids rigidity
20 0.16
40 4.22
60 18.82
80 45.96
100 84.47
124 333.09

Four-
connectivity

0.
5.36
48.78
57.84
115.04
323.98

Whereas the four-connectivity routines are entirely deterministic, there is a degree
of randomness involved in the redundant rigidity calculations. The values in the
rigidity matrix come from a random realization of the graph. For some realizations
this can lead to numerical problems in the QR factorization. This was observed in
practice for the largest problem, involving the factorization of a 10853283 matrix.
In particular, the factorization had a difficult time determining when a value should
be considered to be zero. After several attempts with different random number seeds
a realization was generated with excellent numerical properties. For this factorization
there was a gap of nearly five orders of magnitude between the smallest value that was
accepted as nonzero, and the largest that was rejected. Additional runs demonstrated
that as long as there was a reasonable gap between these values the redundant rigidity
calculations were essentially deterministic.

6.2. The vertex separator heuristic. The algorithm for identifying small sep-
arators ran rapidly and produced good separators. For the largest problem the total
time spent in the separator routines was only 1.55 minutes, a minuscule fraction of the
total running time. A plot of the size of the separator set versus the size of the graph
is shown in Fig. 6 for all the invocations of the algorithm in the set of test problems.
Except for the smallest graphs, the vast majority of separators have between 5-10%
of the total number of vertices. Note that no separator smaller than four could ever
be found, for it would imply that the graph was not four-connected, and hence not
uniquely realizable.

The idea of using a small separator heuristic was based on our hope that it would
typically divide the graph into two halves, each of which had a good chance of being
uniquely realizable. The technique succeeded in dividing the graphs into two pieces of
approximately equal size, but unfortunately they were not always uniquely realizable.
Often each half would contain a large uniquely realizable subgraph along with a few
smaller unique subgraphs and maybe some isolated vertices. These various pieces
must eventually be combined with an invocation of the global optimizer, and the cost
of an optimization depends critically on the number of subgraphs and isolated vertices
being combined. When this number is large the optimization problems are difficult.
As the results in the next section indicate, the total cost of each of the problems was
dominated by the cost of a few large optimization problems generated in this way. In

D
ow

nl
oa

de
d

03
/1

8/
15

 to
 1

98
.1

02
.1

53
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

852 B. HENDRICKSON

6O

5O

4O

3O

2O

l0

0 100 200 300 400 500 600 700 800
Graph Vertices

FIG. 6. Separator size as a function of graph size.

this sense the vertex separator approach was a disappointment. It would be preferable
to have an alternate technique for dividing large problems into smaller ones that is
more successful at generating a small number of uniquely realizable subproblems.

6.3. The optimization routines. As expected, the global optimization rou-
tines dominated ABBIE’s running time. This is partially a consequence of the NP-
hardness of the molecule problem, but it is also a reflection of the simplicity of the
optimization routines encoded in ABBIE. A sophisticated optimizer should be able to
reduce the running time substantially, so the times presented below should be taken
as only a rough measure of the relative complexity of the optimization problems.

To determine the coordinates of the vertices ABBIE first employs a combinatoric
approach to combine chunks and vertices as described in 5.1. Most of the optimiza-
tion problems encountered in the set of test problems were completely solved this way.
For all our problems the combinatorial operations were extremely efficient relative to
the optimizations. For the largest problem all the combinatorial phases consumed a
total of less than 50 CPU seconds, while the optimizations required many days.

The optimizer in ABBIE searches for a global minimizer by repeated local mini-
mizations from random starting points. To mitigate concerns of particularly lucky or
unlucky sequences of starting points, each of the six problems was run three times.
The cost of the decomposition routines remained virtually unchanged, but the opti-
mization time varied by as much as two orders of magnitude, as indicated by Table 3.

As discussed in 5, the cost of an optimization problem should grow as 2k-l,
where k is the number of chunks being combined. However, for our test problems we
already knew the correct answer, and hence the appropriate parity for each chunk.
We exploited this knowledge to reduce the actual computational effort by ensuring
that all the parities for each optimization were correct. The resulting running time
was then multiplied by 2k-1 to approximate a more realistic, unbiased run. The
results in Table 3 were generated this way. Additional information may be available
to the chemist that would resolve parities more directly. For instance, amino acids are

D
ow

nl
oa

de
d

03
/1

8/
15

 to
 1

98
.1

02
.1

53
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

THE MOLECULE PROBLEM 853

TABLE 3
Total minutes spent in global optimizer.

Amino acids Trial 1
20 1.9 10
40 4.5 104
60 6.6 106
80 8.8 105
100 1.3 105
124 2.5 105

Trial 2
9.0 102

7.5 105

2.2 106

3.6 105

3.9 10a

1.1 105

Trial 3
4.3 102

1.2 106

4.7 106

3.5 103

2.8 105

1.8 x 105

Average
1.1 x i0
6.6 x 105

4.5 x 106

4.1 x 105

1.5 x 105

1.8 x 105

generally found in only one of their two possible mirror images. This kind of insight
could be used to greatly improve the performance of the optimizer.

The total optimization time presented in Table 3 shows an unexpected dependence
on the size of the graph being realized. Except for the smallest problem, the two largest
problems are the least expensive ones. This result is especially surprising since we
expect larger problems to have to perform more optimizations. This expectation is
borne out by the results presented in the second column of Table 4. Clearly, the
optimization problems for the 40 and 60 amino acid problems are more difficult than
those for the larger problems. We believe this is a consequence of using leading
subchains of the protein to generate the intermediate test problems. As remarked
above, unlike a full protein, a leading subchain will not generally form a compact
structure. With a less dense conformation, there is less geometric data to work with.

Another way to consider the problem complexity is to look at the number of
difficult optimization problems. We will consider an optimization problem to be large
if it involves at least 25 variables. (Recall that if the vertices are treated individually
each of them contributes three variables.) Not surprisingly, the number of large
optimization problems increases with problem size, as indicated by the last column
of Table 4.

TABLE 4
Number of optimizations.

Amino Total
acids optimizations
20 2
40 7
60 15
80 21
100 22
124 32

Large
optimizations

For each of the test problems, the total optimization time is dominated by this
subset of large problems; they always consume more than 99% of the total optimiza-
tion time. A breakdown of these large problems is given in Table 5, in which the
number of trials necessary to find the global optimum for the three trials is shown as
a function of the number of variables and number of chunks in the optimization prob-
lem. The trials always had the parities of the chunks correct, so for a more correct
measure of the difficulty of the problems the number of attempts should be multiplied
by 2k-1. With this dependence on parities removed, the number of trials should de-
pend solely on the topography of the penalty function. Generally, we would expect
the penalty function to become more complex as the number of variables increases,
but the experimental data reveals a much more complicated situation. For example,

D
ow

nl
oa

de
d

03
/1

8/
15

 to
 1

98
.1

02
.1

53
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

854 B. HENDRICKSON

the problems encountered in the test problem with 100 amino acids show exactly the
opposite behavior. The optimization with 30 variables is much more difficult than
those with 39.

TABLE 5
Breakdown of large optimization problems.

Amino Number of
acids variables (chunks)
20 34 (7)
a0 4 (s)
60 54 (7)
80 25 (5)
80 42 (7)
00 3 (s)
100 30 (5)
00 3 ()
124 33 (7)
124 39 (8)
e4 ()
124 28 (5)
124 39 (6)
124 31 (5)
124 39 (10)

Number of starting attempts
Trial 1 Trial 2 Trial 3
241 101 55
1425 17451 25443
183092 61871 129258
40 387 124
77470 25085 209
6 6 14
57013 17088 101326
1391 147 924
5395 417 2226
30 1960 575
2745 2213 447
632 364 502
22917 518 12261
5 1 2
238 829 498

Average
132
14773
124740
184
34255
9
58476
821
2679
855
1802
499
11899
3
522

The values in Table 5 reveal why the test problems with 40 and 60 amino acids
were so difficult. The optimization problems encountered were the largest of any
in the test set. This led to a large number of trials, each of which involved large
Hessians. In addition, these problems involved many chunks, which further increased
the running time. However, the examples in the table indicate that size alone is a
poor predictor of computational difficulty.

Without exception, the large, expensive problems all occurred while trying to
combine a large number of chunks and vertices that were created by the small ver-
rex separator. An alternate technique that decomposed a large graph into a small
number of uniquely realizable subgraphs would reduce the incidence of such difficult
optimizations with a corresponding dramatic improvement in run time.

Having said this, it is still true that the cost of an optimization problem tends to
increase sharply as the problem size grows. This justifies the divide-and-conquer idea
underlying ABBIE.

7. Conclusions and future work. The divide-and-conquer approach to the
molecule problem exemplified by ABBIE shows promise at solving large, practically
interesting instances of an NP-hard problem. This technique should work on a large
class of instances of the molecule problem. Instances with many extra edges should
decompose easily into manageable pieces, while those with very few edges will quickly
be broken into uniquely realizable subgraphs. It is in the intermediate region where
the decomposition approach may fail, when there are just enough edges for a unique
solution but not enough for subgraphs to be unique.

Our recursive decomposition has several distinct advantages over other approaches
to the molecule problem. First, if there is not enough information to uniquely solve the
problem (the typical situation in chemical applications) ABBIE will identify and solve
unique subproblems. The remaining degrees of freedom in the problem describe the
range of solutions that are compatible with the data, and investigating this solution
space is now reduced to a much smaller problem. Chemists are often interested in

D
ow

nl
oa

de
d

03
/1

8/
15

 to
 1

98
.1

02
.1

53
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

THE MOLECULE PROBLEM 855

this information for its own sake. The range of solutions may be related to the actual
flexibility of the molecule, in which case the motions identified by ABBIE may have
important physical significance.

Second, for many applications it is only a small portion of the molecule that is of
interest, like a binding site. Even if there is not enough data to uniquely position the
full molecule, ABBIE may be able to solve for the subproblem of interest. ABBIE
will automatically identify the portions of the molecule that can be solved uniquely.

Third, the graph algorithms in ABBIE determine whether or not there is sufficient
data to solve an instance of the problem. This knowledge can be used to direct further
experiments. In this way, poorly posed problems can be readily identified and avoided.

Fourth is the problem of inconsistent data. In any physical experiment there can
be some measurements that are in error. This is a difficult problem for all of the
approaches to the molecule problem, and they typically find a solution that nearly,
but not exactly, satisfies all the constraints. If there are a few bad values that are
causing the confusion, identifying them would be extremely useful as they could then
be discarded. The only previous techniques for identifying bad data .involved repeated
attempts to solve the full problem, each time discarding a few edges. If one of the
runs produced an acceptable answer then a discarded edge must have been causing
the confusion. Our recursive decomposition has the potential to simplify this task.
Inconsistent data would be indicated by the inability to solve a particular subproblem,
narrowing the location of the erroneous data to the values in this subproblem.

In addition to inconsistent data, we would like to be able to deal with the real-
istic problem in which distances are not known exactly. Much of the theory about
unique realizations will no longer apply in the presence of measurement uncertainty.
We believe that the underlying ideas will still be applicable in this case, but in a more
heuristic way. For instance, a graph that violates the necessary conditions for unique-
ness will still have multiple realizations in the presence of data uncertainty, which can
still permit the decomposition into smaller subproblems. However, uniqueness is now
harder (and probably impossible) to guarantee. But as long as the range of satisfying
conformations of a subgraph remains relatively small, the decomposition approach is
still appropriate. Instead of treating a solution to a subproblem as a rigid body, sim-
ply use it as a starting conformation for the subset of vertices, allowing their relative
locations to change as the optimization proceeds. If the solution from the subprob-
lem is near to the correct solution, then this should provide a good starting point
for the succeeding optimization. This should significantly reduce the optimization
effort. By treating the solution of subproblems as intelligent starting points for later
optimizations, the overall difficulty of the problem should be reduced.

The algorithms in ABBIE could be improved in a number of ways. One of the
asymptotically faster four-connectivity algorithms could be used, and sparse matrix
algorithms could be used in the redundant rigidity calculations. Much greater savings
could be realized by improving the optimization phase, by far the most time con-
suming portion of the code. The number of optimization variables could be reduced
using more sophisticated combinatorial heuristics than those described in 5.1. A
more sophisticated global optimization routine could be employed, like the stochastic
technique of Rinnooy Kan and Timmer [27]. Stochastic techniques also have the ad-
vantage of being easy to parallelize [4]. Additional possible approaches to the global
optimization problem would be the tunneling algorithm of Levy and Montalvo [21],
or a simulated annealing approach [30]. In addition, there are various optimization
tools that could improve the performance of the local optimizations. A quasi-Newton

D
ow

nl
oa

de
d

03
/1

8/
15

 to
 1

98
.1

02
.1

53
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

856 B. HENDRICKSON

approach could be used so that instead of refactoring the Hessian matrix at each step,
the factorization would be approximated and updated in linear time. Also, sparsity
within the Hessians could be exploited.

An alternate way to substantially reduce the cost of the optimizations would be
to reconsider the way in which uniquely realizable subgraphs are decomposed into
smaller problems. As mentioned in 6, the cost of the optimizations was dominated
by problems involving many subgraphs. These problems were induced by the prolif-
eration of smaller subgraphs generated by ABBIE’s vertex separator algorithm. An
alternate method that identified small uniquely realizable subgraphs more directly
could have a dramatic impact on runtime.

More generally, we believe the basic ideas described in this paper have applica-
bility beyond the molecule problem. Divide-and-conquer techniques have not been
commonly used in optimization, primarily because it is difficult to figure out how
they can be applied. There are three aspects to the molecule problem that make a
recursive decomposition possible. First, the penalty function describing an instance
of the problem expresses equality constraints, since each edge must achieve a specific
distance. Second, the penalty function consists of a sum of simple subfunctions, each
relating only a small number of variables; that is, it is partially separable. This allows
for the identification of subproblems that completely contain a set of constraints. If,
instead, the subfunctions coupled many variables, then it would be difficult to de-
compose the problem. Third, there is a deep combinatorial structure to the molecule
problem that allows solvable subproblems to be identified. The first two of these prop-
erties are fairly common in optimization settings. Although the specific structure we
have exploited is unique to the molecule problem, it is likely that other optimization
problems have analogous structure that can be similarly utilized. Any problem that
contains subproblems that can be solved independently should be amenable to the
type of divide-and-conquer approach described here. The challenge is to identify this
structure.

Acknowledgments. The ideas in this paper have been developed and refined in
innumerable discussions with Tom Coleman and Bob Connelly. I am also indebted to
Kate Palmer for many helpful conversations.

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

[2] L. ASIMOW AND B. ROTH, The rigidity of graphs, Trans. Amer. Math. Soc., 245 (1978), pp. 279-
289.

[3] , The rigidity of graphs, II, J. Math. Anal. Appl., 68 (1979), pp. 171-190.
[4] R. H. BYRD, C. L. DERT, A. H. G. RINNOOY KAN, AND R. B. SCHNABEL, Concurrent stochastic

methods for global optimization, Math. Programming, 46 (1990), pp. 1-30.
[5] J. CHERIYAN AND R. THURIMELLA, On determining vertex connectivity, Tech. Report UMIACS-

TR-90-79, CS-TR-2485, Dept. of Computer Science, University of Maryland at College
Park, 1990.

[6] R. CONNELLY, Personal communication, April 1989.
[7] , Personal communication, September 1989.
[8] , On generic global rigidity, in Applied Geometry and Discrete Mathematics, the Victor

Klee Festschrift, DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence, Volume 4, P. Gritzmann and B. Sturmfels, eds., AMS and ACM, 1991, pp. 147-155.

[9] H. CRAPO, Structural rigidity, Topologie Structurale, 1 (1979), pp. 26-45.
[10] G. M. CRIPPEN AND T. F. HAVEL, Distance Geometry and Molecular Conformation, Research

Studies Press Ltd., Taunton, Somerset, England, 1988.

D
ow

nl
oa

de
d

03
/1

8/
15

 to
 1

98
.1

02
.1

53
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

THE MOLECULE PROBLEM 857

[11] H. N. GABOW AND H. H. WESTERMANN, Forests, frames and games: Algorithms for matroid
sums and applications, in Proc. 20th Annual Symposium on the Theory of Computing,
Chicago, 1988, pp. 407-421.

[12] L. M. GIERASCH AND J. KING, EDS., Protein folding: deciphering the second half of the genetic
code, AAAS, 1989.

[13] H. GLUCK, Almost all simply connected closed surfaces are rigid, in Geometric Topology, Lec-
ture Notes in Mathematics No. 438, Springer-Verlag, Berlin, 1975, pp. 225-239.

[14] B. HENDRICKSON, The Molecule Problem: Determining Conformation from Pairwise Dis-
tances, Ph.D. thesis, Technical Report 90-1159, Cornell University, Dept. of Computer
Science, Ithaca, NY, 1990.

[15] B. HENDRICKSON, Conditions for unique graph realizations, SIAM J. Comput., 21 (1992),
pp. 65-84.

[16] J. E. HOPCROFT AND R. E. TARJAN, Dividing a graph into triconnected components, SIAM J.
Comput., 2 (1973), pp. 135-158.

[17] H. IMAI, On combinatorial structures of line drawings of polyhedra, Discrete Appl. Math., 10
(1985), pp. 79-92.

[18] A. KANEVSKY AND V. RAMACHANDRAN, Improved algorithms for graph four-connectivity, in
Proc. 28th IEEE Annual Symposium on Foundations of Computer Science, Los Angeles,
October 1987, pp. 252-259.

[19] K. KILLIAN AND P. MEISSL, Einige grundaufgaben der riiumlichen trilateration und ihre
gefiihrlichen 5rter Deutsche Geodhtische Komm. Bayer. Akad. WisE., A61 (1969), pp. 65-
72.

[20] G. LAMAN, On graphs and rigidity ofplane skeletal structures, J. Eng. Math., 4 (1970), pp. 331-
340.

[21] A. V. LEVY AND A. MONTALVO, The tunneling algorithms for the global minimizer offunctions,
SIAM J. Sci. Stat. Comput., 6 (1985), pp. 15-29.

[22] J. W. H. LIU, A graph partitioning algorithm by node separators, ACM Trans. Math. Software,
15 (1989), pp. 198-219.

[23] G. L. MILLER, s.-g. TENG, AND S. n. VAVASIS, A unified geometric approach to graph sepa-
rators, in Proc. 32nd IEEE Annual Symposium on Foundations of Computer Science, San
Juan, Puerto Rico, October 1991, pp. 538-547.

[24] J. Mol AND D. SORENSEN, Computing a trust region step, SIAM J. Sci. Statist. Comput., 4
(1983), pp. 553-572.

[25] K. A. PALMER, Personal communication, Chemistry Department, Cornell University, Ithaca,
NY, March, 1990.

[26] K. A. PALMER AND H. A. SCHERAGA, Standard-geometry chains fitted to X-ray derived struc-
tures: Validation of the rigid-geometry approximation, ii. systematic searches for short
loops in proteins: applications to bovine pancreatic ribonuclease A and human lysozyme,
J. Comput. Chem., 13 (1992), pp. 329-350.

[27] A. H. G. RINNOOY KAN AND G. T. TIMMER, A stochastic approach to global optimization, in
Numerical Optimization, P. Boggs, R. Byrd, and R. B. Schnabel, eds., Society for Industrial
and Applied Mathematics, Philadelphia, 1984, pp. 245-262.

[28] B. ROTH, Rigid and flexible frameworks, Amer. Math. Monthly, 88 (1981), pp. 6-21.
[29] J. B. SAXE, Embeddability of weighted graphs in k-space is strongly NP-hard, in Proc. 17th

Allerton Conference in Communications, Control and Computing, 1979, pp. 480-489.
[30] P. J. M. VAN LAARHOVEN AND E. H. L. AARTS, Simulated Annealing: Theory and Applications,

D. Reidel Publishing Company, Boston, MA, 1987.
[31] W. WUNDERLICH, Untersuchungen zu einem trilaterations problem mit komplaneren stand-

punkten, Sitz. Osten. Akad. WisE., 186 (1977), pp. 263-280.
[32] K. WTRICH, The development of nuclear magnetic resonance spectroscopy as a technique for

protein structure determination, Accounts Chemical Res., 22 (1989), pp. 36-44.
[33] , Protein structure determination in solution by nuclear magnetic resonance spec-

troscopy, Science, 243 (1989), pp. 45-50.

D
ow

nl
oa

de
d

03
/1

8/
15

 to
 1

98
.1

02
.1

53
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

